De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state.

نویسندگان

  • Mathias Pawlak
  • Rudolf Jaenisch
چکیده

Induced pluripotent stem cells (iPSCs) are generated from somatic cells by the transduction of defined transcription factors, and this process involves dynamic changes in DNA methylation. While the reprogramming of somatic cells is accompanied by demethylation of pluripotency genes, the functional importance of de novo DNA methylation has not been clarified. Here, using loss-of-function studies, we generated iPSCs from fibroblasts that were deficient in de novo DNA methylation mediated by Dnmt3a and Dnmt3b. These iPSCs reactivated pluripotency genes, underwent self-renewal, and showed restricted developmental potential that was rescued upon reintroduction of Dnmt3a and Dnmt3b. We conclude that de novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct functions of Dnmt3a and Dnmt3b de novo DNA methyltransferases in ES cell proliferation and differentiation

Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, have been identified in humans and mice to contribute to the methylation of unmodified DNA. We recently showed a transition of de novo DNA methyltransferase expression from Dnmt3b to Dnmt3a during mouse embryogenesis and in tissue-specific stem cells, suggesting distinct functions of Dnmt3a and Dnmt3b during these processes. In this study, ...

متن کامل

The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a.

Dnmt3L is required for the establishment of maternal methylation imprints at imprinting centers (ICs). Dnmt3L, however, lacks the conserved catalytic domain common to DNA methyltransferases. In an attempt to define its function, we coexpressed DNMT3L with each of the two known de novo methyltransferases, Dnmt3a and DNMT3B, in human cells and monitored de novo methylation by using replicating mi...

متن کامل

Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases

DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesi...

متن کامل

De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells

DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD...

متن کامل

Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells

Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi-methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 25 10  شماره 

صفحات  -

تاریخ انتشار 2011